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INTRODUCTION 

Background 

The Wildfire Risk to Communities project (WRC) was created in response to direction by the U.S. 
Congress in the 2018 Consolidated Appropriations Act (i.e., 2018 Omnibus Act, H.R. 1625, Section 
210: Wildfire Hazard Severity Mapping). That legislation directed the USDA Forest Service to develop 
and publish, within two years, national geospatial products depicting wildfire hazard and risk for 
communities across the United States. The focus of the legislation was firmly on communities. The 
intent was to help U.S. communities understand components of their relative wildfire risk profile, 
the nature and effects of wildfire risk, and actions they can take to mitigate risk.  

To meet the intent of the Omnibus Act, the Forest Service formed a team of experts to develop the 
necessary data and build a website for effective delivery of information to communities. The team 
consisted of wildfire analysts from the Fire Modeling Institute (FMI), part of the Forest Service’s 
Rocky Mountain Research Station (RMRS), and wildfire modeling and geospatial data experts at 
Pyrologix, LLC. A non-profit partner, Headwaters Economics, also became a critical player in 
developing the public-facing website with interactive maps and charts, and clear communication 
targeted to local government officials and private citizens who could take actions to mitigate risks in 
their communities. 

The result of those initial efforts was the Wildfire Risk to Communities website 
(www.wildfirerisk.org) that was launched in April 2020. The data products published in that initial 
rollout were built on the nationwide wildfire hazard data from Short et al. (2020a), and they 
represented the first time wildfire risk to communities had been mapped nationally with consistent 
methodology down to the level of individual communities (Scott et al. 2020a, 2020b). The data 
provided foundational information for comparing the relative wildfire risk among populated 
communities in the United States. 

Data Update 

Wildfire hazard reflects the overall likelihood and probable intensity of wildfire, and it is not static 
through time. It is influenced by the condition of vegetation and other burnable materials (i.e., fuels) 
and by temperature, moisture, and other dynamic elements of the fire environment. When the first 
version of WRC data was released in 2020, they were based on ground conditions as of the end of 
2014. This lag of six years reflects the enormous amount of work involved in updating vegetation 
and fuel maps across the United States and the running wildfire simulation modeling for such a large 
area. It was always our intent that those initial data products would be the first of many versions, 
with data updates as frequently as possible and practical.  

This second release of WRC data (WRC 2.0) represents the first update to our initial data products. 
The methods used to generate the hazard and risk data for this update differ in many ways from 
those used in the initial 2020 release. For updated annual Burn Probability, we collaborated with 
scientists at the RMRS Missoula Fire Sciences Lab to perform a new set of wildfire simulations 
covering the Conterminous United States (CONUS), Alaska, and Hawaii using the FSim large fire 
simulator. Details on that effort can be found in Dillon et al. (2023). Important differences in the 
hazard data from version 1.0 to version 2.0 include: 

http://www.wildfirerisk.org/
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• The fuelscape (set of spatial data layers that describe fuels, vegetation, and topography 
inputs for fire behavior modeling) used for WRC 1.0 represented conditions at the end of 
2014, whereas the fuelscape used for this update represents conditions at the end of 2020.  

• The overall fire occurrence time period used for WRC 1.0 is 1992 – 2015, whereas the fire 
record used for this update includes 1992 – 2020.   

• The period of daily temperature and precipitation observations used to generate input 
weather for WRC 1.0 modeling was 1979 – 2012. The period used for WRC 2.0 was 2004 – 
2018, both shorter and more recent. 

For the remaining hazard measures, which are all related to fire intensity, we did not use FSim’s 
flame-length probability results. Instead, we used WildEST, a fire characteristics modeling utility 
developed by Pyrologix1. WildEST performs a comprehensive set of FlamMap2 (Finney 2006) runs 
spanning the full range of weather-related characteristics that occur during a fire season and then 
integrates those runs into a variety of results based on the relative likelihood of those weather types 
occurring. WildEST accounts for the influence of non-heading fire intensity (i.e., backing and flanking 
fire, not in the primary direction of fire growth) using the relative distribution of fire intensity 
around an elliptical fire perimeter (Scott 2020). These FlamMap-based WildEST results were chosen 
for this update over FSim’s fire intensity results because they are calculated at the native 30-m 
resolution of the fuel data, which provides significantly greater spatial detail than the 270-m 
resolution of the FSim data.  

For this update, the WildEST results produced are:  

• flame-length probabilities (FLPs)  
• conditional Flame Length (CFL) 
• flame-length exceedance probabilities for flame lengths of  

o four feet (FLEP4; the limit of manual control), 
o eight feet (FLEP8; the limit of mechanical control).  

From those primary results we produced all-lands rasters for Conditional Risk to Potential Structures 
and Risk to Potential Structures (described below). 

In addition, we calculated Wildfire Hazard Potential at a 30-m cell size using the 30-m WildEST FLPs 
instead of the FSim FLPs. Additional details on the methods used for intensity-related measures are 
provided later in this document. 

Another reason for periodic updates to the WRC data — beyond changes in wildfire hazard (as 
captured by the modeling efforts mentioned above) — is that the communities, and the buildings 
and homes within them that may be at risk, also change over time. In this update, we also 

 

 

 

1 Reference in this report to any product, service, enterprise, or individual, including any written works 
(i.e., books, articles, papers), is not an endorsement and does not imply official government sanction or 
endorsement of those entities or their views. 

2 https://www.firelab.org/project/flammap 

https://www.firelab.org/project/flammap
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incorporated new and improved building footprint datasets as well as updated population and 
housing-unit information from the U.S. Census Bureau. Those updates influence the suite of data 
products published separately that focus specifically on populated areas. 

This purpose of this white paper is to provide a description of the methods used in updating the 
spatial datasets representing landscape-wide characteristics of wildfire hazard and risk for the WRC 
2.0 data release. There are two companion papers: one that describes methods for populated areas 
datasets, and one that details the process we used to summarize those data for communities in the 
United States (Jaffe et al. 2024) and delineate Community Wildfire Risk Reduction Zones (Dillon et 
al. 2024). 

Data Overview 

The data included in this publication depict components of wildfire hazard and risk for all lands in 
the United States. The focus is on exposure of housing units to wildfire if a home were present at 
each location across the landscape. We do not consider exposure of other assets or resources that 
might be affected by wildfire. 

A related assessment of wildfire hazard and risk in the populated areas of the nation – where 
housing units are currently present – is provided and documented in a separate publication (Jaffe 
et al. 2024).  

When the data for WRC 1.0 were published, the landscape-wide data publication (Scott et al. 2020) 
included tabular summaries of hazard and risk by states, counties, and communities. The 
accompanying white paper included descriptions of the summary fields and methods. With this 
release for WRC 2.0, we have chosen to include tabular summaries and descriptions with the data 
publication for the Community Wildfire Risk Reduction Zones (Dillon et al. 2024) because those 
zones were used in the summary process. 

DATA AND METHODS 

Input Datasets 

The input datasets used to produce the updated 30-m all-lands hazard and risk data for the Wildfire 
Risk to Communities project include datasets related to fuel and topography, land cover, and burn 
probability. We describe those input datasets in the following sections. 

The most recent version of LANDFIRE data available at the time of processing was the foundation for 
fuel, topography, and land cover. The required data exist in three different spatial domains; each 
domain used a different spatial reference (projection) (see table below).  

Spatial domain LANDFIRE version Projection 
Conterminous U.S. (CONUS) 2.2.0 LF 2020 Albers CONUS 
Alaska (AK) 2.2.0 LF 2020 Albers AK 
Hawaii (HI) 2.2.0 LF 2020 Albers HI 
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Fuel and topography 

The Burn Probability raster for this update (see below) was produced using fuel and topography 
data from LANDFIRE 2.2.0. This version of LANDFIRE data reflects fuel disturbances occurring 
through the end of 2020. One minor edit to the off-the-shelf fuel data was required to calibrate fire 
occurrence in northern Minnesota3.  

The WildEST modeling was performed on a fuelscape provided by the Risk Management Assistance 
(RMA) program of the USDA Forest Service Fire & Aviation Management office. The 2023 RMA 
fuelscape was used for its 2023 national wildfire risk assessment.4  LANDFIRE 2.2.0 surface and 
canopy fuel input rasters were updated to reflect fuel disturbances that occurred in 2021 and 2022 
using a simplified process developed for keeping a fuelscape up-to-date (Gannon, personal 
communication). The fuels used for modeling intensity, therefore, reflected conditions as of the end 
of 2022.  

For use in the WRC project, the 2023 RMA fuelscape was updated with the same edit described 
above for northern Minnesota. 

Land cover  

We used the LANDFIRE FBFM40 raster data to identify burnable vs non-burnable and habitable vs 
uninhabitable land covers. Non-burnable land cover was defined as areas mapped by LANDFIRE as 
any of the non-burnable fuel models in the Scott and Burgan Fire Behavior Fuel Models (FBFM40) 
raster: urban (91), permanent snow/ice (92), non-burnable agriculture (93), open water (98) and 
bare ground (99) (LANDFIRE 2020, Scott and Burgan 2005). We considered everything else burnable 
land cover. The burnable land cover raster was used at both 30-m and 270-m resolution in our raster 
processing described below. Habitable land cover was defined as all land cover types except open 
water and permanent snow/ice.  

Burn probability 

The Burn Probability (BP) input dataset (Dillon et al. 2023) was developed by the USDA Forest 
Service RMRS Missoula Fire Sciences Lab and Pyrologix. They used the fire simulation system (FSim; 
Finney et al. 2011) to simulate at least 20,000 fire season iterations in each of 136 distinct regions of 
contemporary wildfire activity (pyromes) across the United States (Short et al. 2020b). In each 
pyrome, modeling outputs were calibrated to fire occurrence records representing the period 2006-
2020 (Short 2022). The resulting national dataset of annual burn probability has a spatial resolution 
of 270 m. In the national 270-m dataset, all burnable pixels at the 270-m cell size have valid non-
zero values, and all non-burnable pixels have a value of zero.  

 

 

 

3 The canopy base height was lowered in two EVTs historically prone to crown fire behavior. Without the 
adjustment, fire simulations resulted in underburns only, so both probability and intensity were 
underpredicted. 
4 https://experience.arcgis.com/experience/f9d7f7f920494c3db43a23a8dffe4664  

https://experience.arcgis.com/experience/f9d7f7f920494c3db43a23a8dffe4664
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Fire Intensity 

This version of WRC wildfire intensity data uses the WildEST utility rather than using intensity results 
from FSim. For the nationwide simulations used in the Wildfire Risk to Communities project, FSim is 
limited to a relatively coarse resolution of 270-m for both burn probability and fire intensity. By 
using WildEST we were able to use the native 30-m resolution fuelscape available from LANDFIRE. 
As noted above, this process also allowed us to capture the effects of wildfires and other fuel 
disturbances that occurred through the end of 2022. Disturbances can alter the potential intensity 
of future fires more directly than they affect burn probability. Pairing more current, and finer-
resolution intensity data (circa 2023) with slightly older (circa 2021) burn probability provided a 
viable solution for producing the most current national risk maps possible with available data and 
technology. 

The WildEST utility used here is a custom implementation of the USDA Forest Service FlamMap fire 
modeling system (Finney 2006) that produces landscape-scale spatial data representing flame-front 
characteristics. WildEST incorporates the USDA Forest Service WindNinja model5 (Forthofer et. al 
2014) to adapt the general wind speed and wind direction to reflect the influence of topography, 
and also makes use of the dead fuel moisture conditioning feature of FlamMap, so sheltered fuel 
complexes (higher canopy cover or more northerly aspect, for example) have higher dead fuel 
moisture contents than exposed fuel complexes.  

WildEST uses FlamMap to calculate headfire intensity (i.e., in the primary direction of fire growth) 
for the full range of possible weather conditions, which are classified into 216 weather types based 
on wind speed (nine classes), wind direction (eight classes) and fine dead fuel moisture content 
(three classes), and then uses the relative frequency of each weather type to give weight to each 
FlamMap run.  

For producing flame-length probabilities (FLPs), spread in non-heading directions was accounted for 
using the approach described by Scott (2020). 

Methods 

The approaches used to produce the national wildfire hazard datasets do not account for fire spread 
into developed housing areas that are typically mapped as non-burnable. LANDFIRE data show most 
developed areas as “non-burnable” because those areas are not covered by wildland fuel and are 
therefore not appropriate for simulation with wildland fire spread models. As a result, the simulated 
wildfires do not penetrate into developed housing areas. Wildfires have been known to ignite urban 
conflagrations that spread through developed areas for quite some distance. These events are rare, 
but their effects are devastating. Fire scientists are working toward the ability to simulate fire spread 
in both wildland and developed urban and suburban fuels. Until such models are available for use 
within a Monte Carlo simulator such as FSim, post-processing of modeling results can emulate 
penetration of wildfire into otherwise non-burnable developed urban areas.  

 

 

 

5 https://www.firelab.org/project/windninja 

https://www.firelab.org/project/windninja
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For the Wildfire Risk to Communities project, we attempted to mimic the effects of wildfire 
penetration into communities by estimating burn probability and fire intensity in otherwise non-
burnable areas adjacent to burnable fuels using GIS methods for spatially smoothing data. Fires 
originating in smaller blocks of contiguous fuel are assumed to have less ability to ignite urban 
conflagrations. To account for this, we identified and set aside patches of burnable fuel less than 
500 ha in size (Stewart et. al, 2007) that were wholly surrounded by non-burnable fuels. These 
islands often represent urban parks and other relatively small remnants of natural vegetation 
interspersed in mostly developed settings. Details of this approach are described later in this 
document. 

Specific methods for each dataset are described in the sections that follow. 

Burn Probability (BP) 

Burn probability (BP) is a 30-m raster representing the circa 2021 annual likelihood of burning in a 
given location. The effects of fuel disturbances that occurred in 2021 or later are not reflected in this 
BP raster. BP is referred to as Wildfire Likelihood in the Wildfire Risk to Communities web 
application. We generated the Wildfire Risk to Communities BP raster using a multi-stage raster 
geoprocessing-based resampling and smoothing processes applied to the most recent nationwide 
270-m BP results from Dillon et al. (2023). To be most useful to communities, we downscaled the 
national results to a finer spatial resolution. The downscaling method we developed for this project 
involved resampling to a finer resolution, a process we refer to as raster upsampling. We did not re-
simulate wildfire hazard at finer resolution than the native national FSim resolution of Dillon et al. 
(2023) or use statistical downscaling methods common with broad-scale climate data. Our raster 
upsampling approach, described in detail below, instead used a series of iterative resampling steps. 
We chose to upsample to the native 30-m resolution of the nationally-available LANDFIRE fuel and 
vegetation data (LANDFIRE 2.2.0). Following the upsampling step we then “oozed” BP into adjacent 
developed areas, as described below. 

Step 1: Upsampling 
We used the following six-step raster upsampling process to convert the national 270-m BP raster to 
30-m resolution.  

1. Convert zero values to nodata in 270-m data 
2. Two successive 3x3 moving-window averages at 270 m 
3. Revert remaining nodata pixels back to zero at 270 m 
4. Resample to 30-m resolution (cubic convolution method) 
5. Set BP to zero for open water and snow/ice land covers at 30 m  
6. Set negative BP to zero 

The first step in the upsampling process was to convert the 270-m pixels with a BP value of zero to 
nodata. This enables the second step to work as desired. In step 2, we used two successive 3x3 
moving-window means on the 270-m raster to smooth the data and fill in the 270-m cells for which 
BP was initially zero. This process replaced many zero values in the 270-m data with the mean of the 
non-zero cells immediately surrounding them. The two low-pass filters at 270-m resolution filled in 
pixels within 540 m of a burnable pixel. In step 3, we then reverted the remaining nodata values 
back to zero and then, in step 4, resampled the resulting raster to 30 m using cubic convolution. The 
cubic convolution resampling method does some interpolation among the upsampled 30-m cells 
within each 270-m cell. In step 5, we used a processing mask derived from the 30-m LANDFIRE fuels 
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data to set the BP to zero for open water and snow/ice land covers. The cubic convolution also 
resulted in some BP values below zero, and we set these back to zero in step 6. 

Step 2: Estimating wildfire hazard in developed areas (Oozing) 
As mentioned above, we attempted to mimic wildfire penetration into developed (“non-burnable”) 
areas adjacent to large, contiguous areas of wildland fuels. A first step in doing this was to identify 
islands of burnable fuel smaller than 500 ha using the 30-m burnable-fuel raster. We then 
temporarily set the non-zero BP values within the patches to nodata. This prevented oozing BP 
values from those patches, reflecting the relatively low probability of small, vegetated patches to 
start urban conflagrations. For all other areas mapped with non-zero BP values (in contiguous 
patches larger than 500 ha), we expanded BP values into adjacent non-burnable areas through the 
following process: 

1. Set nodata pixels in the 30-m upsampled BP raster to zero, except in areas of open water, 
snow/ice, and the small burnable islands.  

2. Run three successive 510-m moving-window averages (i.e., 510-m radius, circular focal 
means). This effectively allowed BP values to spread into developed areas, bare ground, and 
agricultural areas, but not into water, snow, ice, and small burnable islands.  

3. After smoothing, set the final BP value in small burnable islands to the larger of their original 
value and the smoothed value. 

This method results in BP values that rapidly diminish with increasing distance into non-burnable 
areas.  

The total distance BP values are spread into non-burnable areas using this approach is 1,530 m 
(approximately 1 mile), as the cumulative result of three iterative focal mean operations. This total 
distance is slightly less than the 2.4-km (1.5-mile) distance from large, contiguous areas of wildland 
vegetation currently used to map the “interface” category of Wildland Urban Interface (WUI) in the 
United States (Urban Wildland Interface Communities 2001; Radeloff et al. 2023). In a study of 
buildings destroyed in 70 large wildfires from 2000 to 2018, Caggiano et al. (2020) found that all 
structures lost to wildfire were within 850 m (approximately 0.5 mile) of wildland vegetation. Some 
notable and destructive fires from the past several years — the Coffee Park portion of the 2017 
Tubbs Fire, the 2021 Marshall Fire, the 2023 Lahaina Fire — have destroyed homes closer to 1.5 km 
(1 mile) from wildlands. Therefore, we feel our distance of approximately 1 mile strikes a balance 
between being conservative and pragmatic and is generally consistent with published science and 
recent observations. 

Conditional Flame Length (CFL) 

Conditional Flame Length (CFL) is a 30-m raster representing the mean headfire flame length at a 
given location if a fire were to occur. It is a measure of average wildfire intensity. CFL was calculated 
using a process based on WildEST flame-length results. FlamMap was executed 216 times, producing 
flame-length rasters reflecting a range of weather types – combinations of wind speed, wind 
direction and moisture content scenario. These 216 flame-length rasters were combined into a 
weighted mean as the sum-product of flame-length and weather-type probability across all weather 
types. 

𝐶𝐶𝐶𝐶𝐶𝐶 =  �𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑖𝑖 × 𝑊𝑊𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐹𝐹𝑒𝑒𝑖𝑖

216

𝑖𝑖=1
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Conditional Flame Length was not oozed into developed areas. 

Flame Length Exceedance Probability—4 feet (FLEP4) 

FLEP4 is a 30-m raster representing the conditional probability that flame length at a pixel will 
exceed 4 feet if a fire occurs. FLEP4 indicates the potential that wildfire intensity will be beyond the 
ability of hand crews to control. We generated the Wildfire Risk to Communities FLEP4 by first using 
the same WildEST process used for CFL to produce flame-length probabilities (FLPs) (described 
above). FLEP4 is found by summing the FLPs that represent flame lengths above 4 feet after 
accounting for spread and intensity in non-heading directions (Scott 2020). As with all wildfire 
intensity rasters presented here, it represents fuel characteristics at the beginning of the 2023 fire 
season.  

FLEP4 was not oozed into developed areas. 

Flame-length exceedance probability—8 feet (FLEP8) 

FLEP8 is a 30-m raster representing the conditional probability that flame length at a pixel will 
exceed 8 feet if a fire occurs. FLEP8 indicates the potential for high wildfire intensity that is 
considered the limit of mechanical fire control. We generated the Wildfire Risk to Communities 
FLEP8 raster by first using the same WildEST process used for CFL to produce flame-length 
probabilities (FLPs) (described above). FLEP8 is found by summing the FLPs that represent flame 
lengths above 8 feet after accounting for spread and intensity in non-heading directions (Scott 
2020). As with all wildfire intensity rasters presented here, it represents fuel characteristics at the 
beginning of the 2023 fire season. 

FLEP8 was not oozed into developed areas. 

Exposure Type  

We generated the Exposure Type raster by applying the oozing process described above for burn 
probability using the LANDFIRE 2.2.0 fuels data as the primary input. First, we assigned a value of 
one to all burnable pixels and a value of 0 in all non-burnable pixels in the 2023 RMA fuelscape. 
Then we applied the spatial oozing used for BP (three iterative 510-m focal means) to spread values 
into otherwise non-burnable areas, using the same steps described above to handle small patches of 
burnable vegetation and other land cover types. 

The resulting exposure type values range from 0 to 1. Where the underlying land cover is considered 
burnable in the LANDFIRE fuels data, the value of the Exposure Type raster is 1 indicating pixels 
where a home would be “directly exposed” to wildfire. Where land cover is non-burnable 
developed, agricultural, or bare ground and the upsampled and oozed BP is non-zero (i.e., within 
approximately 1 mile of a 500-ha contiguous area of burnable vegetation), homes would be 
“indirectly exposed” to wildfire. The value of Exposure Type in these areas is between 1 and 0, 
varying by distance to burnable fuels, with pixel values decreasing toward 0 as distance from 
burnable fuel increases. Finally, where the land cover is non-burnable and the upsampled and 
smoothed BP is zero, the value of the Exposure Type raster is 0 indicating pixels where a home 
would have little-to-no exposure to wildfire due to its distance from a large contiguous patch of 
burnable vegetation. 
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Conditional Risk to Potential Structures (cRPS) 

Conditional Risk to Potential Structures (cRPS) is a 30-m raster that represents the potential 
consequences of fire to a home or other structure at a given location if a fire were to occur there 
and if a home were located there. It is a measure that integrates the expected range of wildfire 
intensities with generalized consequences to a structure on every pixel but does not account for the 
annual probability of fire occurrence. It is analogous to conditional Net Value Change (cNVC) 
described by Scott and Thompson (2015). cRPS is referred to as Wildfire Consequence in the Wildfire 
Risk to Communities web application. 

We calculated the initial cRPS raster at 30-m by applying one of three response functions 
representing the relative effect of wildfire on structures (i.e., relative degree of damage or loss) at 
different intensities to the 30-m flame-length probability (FLP) rasters produced by WildEST. 
Response functions were developed for three lifeforms separately: grass/herbaceous, shrub, and 
tree and reflect the assumption that consequence is greatest in tree fuels, lower in shrubs, and 
lowest in grass fuels, across all intensity levels. A value of 0 means no damage to a structure, and a 
value of -100 means complete loss. We applied the response function to all pixels across the 
landscape, even if no structures are present. 

The response function values used were:  

Lifeform FLP1 FLP2 FLP3 FLP4 FLP5 FLP6 
Tree -25 -40 -55 -70 -85 -100 

Shrub -20 -35 -50 -65 -80 -95 
Grass -10 -25 -40 -55 -70 -85 

 

We then created the final 30-m cRPS raster by using a modified version of the oozing approach 
described above for BP that oozes the same distance but does not decay the cRPS values. To avoid 
decaying cRPS with distance, the cRPS values for nonburnable pixels were set to nodata from zero 
before the three iterative 510-m moving-window means.  

Risk to Potential Structures (RPS) 

Risk to Potential Structures is a 30-m raster that integrates wildfire likelihood and intensity with 
generalized consequences to a home on every pixel. For every place on the landscape, it poses the 
hypothetical question, "What would be the relative risk to a structure if one existed here?" It asks 
that question whether a home actually exists at that location or not. This allows comparison of 
wildfire risk in places where homes already exist to places where new construction may be 
proposed. This dataset is referred to as Risk to Homes in the Wildfire Risk to Communities web 
application. 

We calculated the RPS raster at 30-m resolution by multiplying the 30-m cRPS raster (representing 
the intensity and susceptibility components of risk) by the 30-m BP raster (representing wildfire 
likelihood). Just as cRPS is analogous to conditional Net Value Change (cNVC), RPS is analogous to 
the expected Net Value Change (eNVC) presented by Scott et al. (2013). The equation for RPS is 
simply: 

𝑅𝑅𝑒𝑒𝑅𝑅 = 𝑐𝑐𝑅𝑅𝑒𝑒𝑅𝑅 ∗ 𝐵𝐵𝑒𝑒 
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It is important to note that by using consistent response functions for all homes we assume that all 
homes are equally susceptible to wildfire. In reality, an individual home’s ability to survive wildfire is 
driven largely by local conditions that can be highly affected by a homeowner’s or community’s 
efforts toward mitigating wildfire susceptibility. The condition of vegetation in the immediate area 
around a home (known as the “Home Ignition Zone”) and the construction materials used in building 
a home (Quarles et al. 2010) could result in very different response function values for individual 
homes (Cohen 2019). Consideration of this local variation in susceptibility is well beyond the scope 
of the Wildfire Risk to Communities project, and RPS should be considered a landscape metric rather 
than specific to any one home. 

Wildfire Hazard Potential (WHP) 

Wildfire Hazard Potential is a 30-m raster that quantifies the relative potential for wildfire that may 
be difficult to control. It is an index developed by the U.S. Forest Service to inform prioritization of 
fuel treatment needs at a national scale (Dillon et al. 2015). WHP integrates wildfire likelihood and 
intensity with additional factors including historic ignition density of small fires and the relative 
resistance to control posed by wildfire in different fuel types. Similar to the response functions used 
in calculating cRPS, WHP also applies weights to different fire intensities. A complete description of 
the WHP methods is available in Dillon et al. (2015). A national 270-m version of WHP produced 
entirely from the FSim BP and FLPs produced by Dillon et al. (2023) is available at Dillon (2023). 

For this update, we calculated WHP at 30-m resolution using the upsampled BP described above and 
FLP rasters produced at 30-m resolution using WildEST. This represents the first time WHP has been 
calculated nationwide using intensity data modeled natively at 30-m resolution. Other input data 
included the Existing Vegetation Type and Scott and Burgan Fire Behavior Fuel Model rasters from 
LANDFIRE Version 2.2.0 (LANDFIRE 2020), as well as the most recent national Fire Occurrence 
Database (Short 2020).  

WHP was not oozed into developed areas. 
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